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Parameters vs. Hyperparameters

Parameters in DNN are:
• weights, biases and other variables of the model that are updated and adjusted 

during the training process according to the chosen training algorithm.

Hyperparameters in DNN:
• are all variables and parameters of the model that are not adjusted by the 

training algorithm but by the DNN developer;

• are all parameters that can be changed independently of the way how the 
training algorithm works;

• can be adjusted by extra supporting algorithms like genetic or evolutional ones;

• number or layers, number of neurons in hidden layers,

• activation functions and types of used layers , and weights initialization

• learning rate, regularization and optimization parameters,

• augmenting and normalizing training and testing (dev) data,

• dropout and other optimization techniques and their parameters,

• avoiding vanishing and exploding gradients.
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Distribution of Training and Testing Data

Training and testing data should be of the same distribution(s):
If we use, e.g. images from different sources to train Convolutional Neural 
Networks, we must take care about the suitable division of the data from each 
distribution to the training and testing data. On the other hand, we don’t be able 
to adjust the model and achieve high performance and generalization property.

During the training process, we usually use:
Training examples (training set) for adjusting the model

Verifying examples (def set) for checking the training progress

Test examples for checking generalization of the trained model

Sometimes, we don’t use test examples, only checking the model during its 
adaptation and adjustment process.
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Bias and Variance of the Model

When adapting the parameters of the model we can:
• Not enough model the training dataset (underfitting)

• Adjust the model too much, not achieving good generalization (overfitting)

• Fit the dataset adequately (right fitting)

Dependently on high bias 
and/or high variance, we can 
try to change/adjust different 
hyperparameters in the model 
to lower them appropriately 
and achieve better performance 
of the final model.  
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Tackling with high bias and variance

When we achieve high bias (low training data performance), try to:

• Create/use bigger network structure,

• Train the model longer,

• Use different neural network architecture (e.g. CNN, RNN), different layers,

• Change training rate, change activation functions, optimization parameters,

• Use an appropriate loss function not to stuck in local minima,

• …

When we achieve high variance (low dev data performance), try to:

• Use more training data with better distribution over the input and output data 
space (e.g. use data augmentation),

• Try to use regularization (like dropout),

• Use different neural network architecture (e.g. CNN, RNN), different layers,

• Check the data distribution between training and dev sets,

• Early stopping

• …
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Human Level Performance

Human Level Performance:
• Is the classification/prediction error achieved by the committee of highly 

expertise humans (e.g. surgeons, psychologists, teachers, engineers).

• Is treated as a high bound and goal of training the model.

• Can be sometimes exceeded by machines and retrospectively checked by 
human experts.

We will try to achieve human-level performance, and when we do it, we will try to 
achieve a better performance than the human level one is!

The final performance that exceeds the human level one is unknown, so we 
generally do not know how much better the final performance might be because 
human experts cannot do it better.
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Regularization

Regularization means the addition of the regularization factor 

and parameter 𝝀 to the loss function:

𝑱 𝒘, 𝒃 =
𝟏

𝒎


𝒊=𝟏

𝒎

𝑳 𝒂(𝒊), 𝒚(𝒊) +
𝝀

𝟐 ∙ 𝒎
∙

𝒊=𝟏

𝒎

𝒘[𝒍]
𝑭

𝟐

where we usually use Frobenius norm:
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This kind of regularization is often called the “weight decay”.
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Regularization prevents overfitting

Regularization penalizes the weight matrices to be too large 
thanks to this extra regularization factor:

𝑱 𝒘, 𝒃 =
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because we want to minimize the above cost function during the training!
So the network will compose of nearly linear (not very complex) functions.

If the weights are small the output values of the activation functions of the 
neurons will also be not exceeding the middle, almost linear part of the 
activation function, so in case the activation function is nearly linear: 
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Dropout Regularization

Dropout is one of the most popular regularization techniques for deep neural nets. 
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Dropout Regularization

Dropout regularization switches off some neurons with a given probability, 
not using them temporarily during propagation and backpropagation steps forcing 
the network to learn the same by various combinations of neurons in the network:

Implementing dropout regularization 
the input stimuli of neurons are weaken 
according to the number of the shut off 
neurons (i.e. the chosen probability of 
dropout on average, e.g. p = 0.25), so 
the stimulation must be higher to achieve 
the right stimulation of the neurons, e.g. 
the classification neurons in the last layer.

Dropout can be 
selectively used only 
in a selected subset 
of layers.

Dropout is usually 
used to layers with 
a big amount of 
weights and neurons.
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Data Augmentation

We can also augment training dataset to avoid the known limitations of the neural 
structures and learning algorithms to deal with rotated, scaled and moved patterns 
in the input data space. Therefore, we rotate, scale, and move pattern and thus 
augment the training data space by these variations of training data. This 
techniques usually allows to achieve better training results:

• Rotate or move

• Scale (zoom in or out)

• Cut (different parts of images)

• Flip (horizontally or vertically)

• Inverse or change colors
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Early Stopping

We can also use “early stopping” of the training routine before 
the error on the dev set starts to grow:
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Normalizing Training Sets

Normalization:
• Makes data of different attributes (different ranges) comparable and not 

favourited or neglected during the training process. Therefore, we scale all 
training and testing (dev) data inside the same normalized ranges.

• We also must not forget to scale testing (dev) data using the same 𝝁 and 𝝈𝟐. 

𝝁 =
𝟏
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𝒎

𝒙 𝒊 𝒙 ≔ 𝒙 − 𝝁
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𝒎


𝒊=𝟏
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𝒊 𝒙 ≔ 𝒙/𝝈

• The training process is faster and better when training data are normalized!

NormalizedUnnormalized

NormalizedUnnormalized
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Vanishing and Exploding Gradients

In deep structures, computed gradients in previous layers are:
• smaller and smaller (vanish) when a values lower than 1 are multiplied/squared

• greater and greater (explode) when a values bigger than 1 are multiplied /squared

because today we use deep neural networks that consist of tens of layers!
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Weights Initialization

We initialize weights with small values:
• to put the values of activation functions in the range of the largest variance, 

which speed up the training process.

• taking into account the number neurons 𝒏 𝒍−𝟏 of the previous layer, 

e.g. for tanh: 
𝟏

𝒏 𝒍−𝟏 (popular Xavier initialization) or 
𝟐

𝒏 𝒍−𝟏 +𝒏 𝒍 ,

multiplying the random numbers from the range of 0 and 1 by such a factor.

http://home.agh.edu.pl/~horzyk/index-eng.php


On-line and Batch Training

When using a gradient descent algorithm, we have to decide after 
what number of presented training examples parameters (weights 
and biases) will be updated, and due to this number we define:

• Stochastic (on-line) training – when we update parameters immediately after the 
presentation of each training example. 
In this case, training process might be unstable.

• Batch (off-line) training – when we update parameters only after the presentation 
of all training examples. 
In this case, training process might take very long time and stuck in local minima or 
saddle points.

• Mini-batch training – when we update parameters after the presentation of a 
subset of training examples consisting of a defined number of these examples. 
In this case, training process is a compromise between the stability and speed, 
much better avoiding to stuck in local minima, so this option is recommended. 
If the number of examples is too small, the training process is more unstable. 
If the number of examples is too big, the training process is longer but more stable 
and robust. 
The mini-batch size is one of the hyperparameters of the model.
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Mini-batches used in Deep Learning

Training examples are represented as a set of m pairs which are trained and update parameters one 
after another in on-line training (stochastic gradient descent):

𝑿, 𝒀 = 𝒙(𝟏), 𝒚(𝟏) , 𝒙(𝟐), 𝒚(𝟐) , … , 𝒙(𝒎), 𝒚(𝒎)

Hence, we can consider two big matrices storing input data X and output predictions Y, 
which can be presented and trained as one batch (batch gradient descent):

𝑿 = 𝒙(𝟏), 𝒙(𝟐), 𝒙(𝟑), … , 𝒙 𝟏𝟎𝟎𝟎 , … , 𝒙 𝟐𝟎𝟎𝟎 , … , 𝒙 𝟑𝟎𝟎𝟎 , … , 𝒙(𝒎)

𝒀 = 𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), … , 𝒚 𝟏𝟎𝟎𝟎 , … , 𝒚 𝟐𝟎𝟎𝟎 , … , 𝒚 𝟑𝟎𝟎𝟎 , … , 𝒚(𝒎)

Or we can divide them to mini-batches (mini-batch gradient descent) and update the network 
parameters after each mini-batch of training examples presentation:

𝑿 = 𝒙(𝟏), 𝒙(𝟐), 𝒙(𝟑), … , 𝒙 𝟏𝟎𝟎𝟎 | 𝒙 𝟏𝟎𝟎𝟏 , … , 𝒙 𝟐𝟎𝟎𝟎 | 𝒙 𝟐𝟎𝟎𝟏 , … , 𝒙 𝟑𝟎𝟎𝟎 | 𝒙 𝟑𝟎𝟎𝟏 , … , 𝒙(𝒎)

𝑿 𝟏 𝑿 𝟐 𝑿 𝟑 𝑿 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

𝒀 = 𝒚(𝟏), 𝒚(𝟐), 𝒚(𝟑), … , 𝒚 𝟏𝟎𝟎𝟎 | 𝒚 𝟏𝟎𝟎𝟏 , … , 𝒚 𝟐𝟎𝟎𝟎 | 𝒚 𝟐𝟎𝟎𝟏 , … , 𝒚 𝟑𝟎𝟎𝟎 | 𝒚 𝟑𝟎𝟎𝟏 , … , 𝒚(𝒎)

𝒀 𝟏 𝒀 𝟐 𝒀 𝟑 𝒀 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

𝑿, 𝒀 = 𝑿 𝟏 , 𝒀 𝟏 , 𝑿 𝟐 , 𝒀 𝟐 , … , 𝑿 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆 , 𝒀 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆

If m= 20.000.000 training examples and the mini-batch size is 1000, we get 20.000 mini-batches (i.e. 
training steps for each full training dataset presentation, called training epoch), where T = 𝒎/𝒃𝒂𝒕𝒄𝒉𝒔𝒊𝒛𝒆.

In deep learning, we use mini-batches to speed up training and avoid stacking in saddle points.
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Graphical Interpretation of Mini-batches
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Mini-batch Gradient Descent

To optimize computation speed, the mini-batch size (mbs) is 
usually set according to the number of parallel cores in the 
GPU unit, so it is typically any power of two:

• mbs = 32, 64, 128, 256, 512, 1024, or 2048

because then such mini-batches can be processed in one 
parallel step time-efficiently.

If mbs = m, we get Batch Gradient Descent typically used for 
small training dataset (a few thousands of training examples).

If mbs = 1, we get Stochastic Gradient Descent.

Therefore, instead of looping over every training example (like 
in stochastic training) or stacking all training examples into 
two big matrices X and Y, 
we loop over the number of mini-batches, computing outputs, 
errors, gradients and updates of parameters (weights and 
biases):

One training epoch consists of T training steps over 
the mini-batches.

Mini-batches are used for big training dataset (ten or hundred 
thousands and millions of training examples) to accelerate 
computation speed.
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Exponentially Weighted Averages

Exponentially Weighted (Moving) Averages is another much faster 
optimization algorithm than Gradient Descent:

• We compute weighted averages after
the following formula:

• 𝒗𝟎 = 𝟎

• 𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

• where 𝜷 controls the number or previous

steps that control the current value 𝒗𝒕 :

• 𝜷𝒓𝒆𝒅 = 𝟎. 𝟗 (adapts taking into account 10 days)

• 𝜷𝒈𝒓𝒆𝒆𝒏 = 𝟎. 𝟗𝟖 (adapts slowly in view of 50 days)

• 𝜷𝒚𝒆𝒍𝒍𝒐𝒘 = 𝟎. 𝟓 (adapts quickly averaging 2 days)

• 𝜽𝒕 - is a currently measured value (temperature)

We can use this approach for optimization
in deep neural networks.
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Exponentially Weighted Averages

Why we call this algorithm Exponentially Weighted Averages:
When we substitute and develop the formula:

𝒗𝟎 = 𝟎
𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

we get the following:

𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 = 𝜷 ∙ 𝜷 ∙ 𝒗𝒕−𝟐 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 =
= 𝜷 ∙ 𝜷 ∙ 𝜷 ∙ 𝒗𝒕−𝟑 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟐 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 =

= 𝟏 − 𝜷 𝜷𝟎 ∙ 𝜽𝒕 + 𝜷𝟏 ∙ 𝜽𝒕−𝟏 + 𝜷𝟐 ∙ 𝜽𝒕−𝟐 + 𝜷𝟑 ∙ 𝜽𝒕−𝟑 + 𝜷𝟒 ∙ 𝜽𝒕−𝟒 +⋯

and when we now substitute 𝛽 = 0.9 we get the weighted average by

the exponents of the β value:

𝒗𝒕 = 𝟏 − 𝟎. 𝟗 𝜽𝒕 + 𝟎. 𝟗 ∙ 𝜽𝒕−𝟏 + 𝟎. 𝟗𝟐 ∙ 𝜽𝒕−𝟐 + 𝟎. 𝟗𝟑 ∙ 𝜽𝒕−𝟑 + 𝟎. 𝟗𝟒 ∙ 𝜽𝒕−𝟒 +⋯ =

=
𝜽𝒕 + 𝟎. 𝟗 ∙ 𝜽𝒕−𝟏 + 𝟎. 𝟗𝟐 ∙ 𝜽𝒕−𝟐 + 𝟎. 𝟗𝟑 ∙ 𝜽𝒕−𝟑 + 𝟎. 𝟗𝟒 ∙ 𝜽𝒕−𝟒 +⋯

𝟏𝟎
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Bias Correction for Exp Weighted Averages

When we start with the Exponential Weighted Averages, we are too much influenced by the 
𝒗𝟎 = 𝟎 value (violet curve): 

𝒗𝟎 = 𝟎 & 𝜷 = 𝟎. 𝟗𝟖

𝒗𝟏 = 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 = 𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 ≪ 𝜽𝟏

𝒗𝟐 = 𝟎. 𝟗𝟖 ∙ 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐 = 𝟎. 𝟎𝟏𝟗𝟔 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐 ≪
𝜽𝟏 + 𝜽𝟐

𝟐
To avoid this, we use the correction factor (green curve) 𝟏 − 𝜷𝒕:

𝒗𝒕 =
𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

𝟏 − 𝜷𝒕

𝒗𝟏 =
𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏

𝟏 − 𝟎. 𝟗𝟖
=
𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏

𝟎. 𝟎𝟐
= 𝜽𝟏

𝒗𝟐 =
𝟎. 𝟗𝟖 ∙ 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐

𝟏 − 𝟎. 𝟗𝟖𝟐
=
𝟎. 𝟎𝟏𝟗𝟔 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐

𝟎. 𝟎𝟑𝟗𝟔
≈
𝜽𝟏 + 𝜽𝟐

𝟐

Thanks to this bias correction, we do not follow
the violet curve but the green (corrected) one:
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Gradient Descent with Momentum

Gradient Descent with Momentum:
• Uses exponentially weighted averages of the gradients

• Slows down oscillations that cancel each other out when the gradients differ in the 
consecutive steps.

• Accelerates the convergence steps like a ball rolling in a bowl if the gradients are 
similar in the consecutive steps.

• 𝑾≔𝑾−𝜶 ∙ 𝒗𝒅𝒘

• 𝒃 ≔ 𝒃 − 𝜶 ∙ 𝒗𝒅𝒃

• 𝒗𝒅𝑾 ≔ 𝜷 ∙ 𝒗𝒅𝑾 + 𝟏 − 𝜷 ∙ 𝒅𝑾

• 𝒗𝒅𝒃 ≔ 𝜷 ∙ 𝒗𝒅𝒃 + 𝟏 − 𝜷 ∙ 𝒅𝒃
friction        velocity                 acceleration

• The quotient 𝟏 − 𝜷 is often omitted:

• 𝒗𝒅𝑾 ≔ 𝜷 ∙ 𝒗𝒅𝑾 + 𝟏 − 𝜷 ∙ 𝒅𝑾

• 𝒗𝒅𝒃 ≔ 𝜷 ∙ 𝒗𝒅𝒃 + 𝟏 − 𝜷 ∙ 𝒅𝒃

• Hyperparameters: 𝜶,𝜷, Typical values: 𝜶 = 𝟎. 𝟏, 𝜷 = 𝟎. 𝟗

• Bias correction is rarely used with momentum, however might be used.
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Gradient Descent with Momentum

Gradient Descent with Momentum:
• Uses exponentially weighted averages of the gradients

• Slows down oscillations that cancel each other out when the gradients differ in the 
consecutive steps.

• Accelerates the convergence steps like a ball rolling in a bowl if the gradients are 
similar in the consecutive steps.
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Root Mean Square Propagation

Root Mean Square Propagation (RMSprop):
• Computes exponentially weighted average of the squares of the derivatives

• 𝒔𝒅𝑾 ≔ 𝜷 ∙ 𝒔𝒅𝑾 + 𝟏 − 𝜷 ∙ 𝒅𝑾𝟐 where 𝒅𝑾𝟐 is element-wise

• 𝒔𝒅𝒃 ≔ 𝜷 ∙ 𝒔𝒅𝒃 + 𝟏 − 𝜷 ∙ 𝒅𝒃𝟐 where 𝒅𝒃𝟐 is element-wise

• Parameters are updated in the following way:

• 𝑾≔𝑾−𝜶 ∙
𝒅𝑾

𝒔𝒅𝑾
𝒃 ≔ 𝒃 − 𝜶 ∙

𝒅𝒃

𝒔𝒅𝒃

• Where 𝒔𝒅𝑾 and 𝒔𝒅𝒃 balance the convergence process 

independently of how big or how small are 𝒅𝑾, 𝒅𝒃, 𝒔𝒅𝑾, and 𝒔𝒅𝒃.
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Adam Optimization Algorithm

Adam optimizer puts momentum and RMSprop together:
• Initialize Hyperparameters:

𝜶 – needs to be tuned

𝜷𝟏 = 0.9 (typical, default)

𝜷𝟐 = 0.999 (typical , default)

𝜺 = 𝟏𝟎−𝟖 (typical , default)

• Initialize:        𝒗𝒅𝑾 ≔ 𝟎; 𝒗𝒅𝒃 ≔ 𝟎; 𝒔𝒅𝑾 ≔ 𝟎; 𝒔𝒅𝒃 ≔ 𝟎

• Loop for t iterations over the mini-batches of the training epoch:

• Compute gradients 𝒅𝑾 and 𝒅𝒃 for current mini-batches.

• Compute correction parameters with corrections and final parameter updates:

𝒗𝒅𝑾
𝒄𝒐𝒓𝒓 ≔

𝜷𝟏∙𝒗𝒅𝑾+ 𝟏−𝜷𝟏 ∙𝒅𝑾

𝟏−𝜷𝟏
𝒕 𝒗𝒅𝒃

𝒄𝒐𝒓𝒓 ≔
𝜷𝟏∙𝒗𝒅𝒃+ 𝟏−𝜷𝟏 ∙𝒅𝒃

𝟏−𝜷𝟏
𝒕

𝒔𝒅𝑾
𝒄𝒐𝒓𝒓 ≔

𝜷𝟐∙𝒔𝒅𝑾+ 𝟏−𝜷𝟐 ∙𝒅𝑾𝟐

𝟏−𝜷𝟐
𝒕 𝒔𝒅𝒃

𝒄𝒐𝒓𝒓 ≔
𝜷𝟐∙𝒔𝒅𝒃+ 𝟏−𝜷𝟐 ∙𝒅𝒃𝟐

𝟏−𝜷𝟐
𝒕

𝑾≔𝑾−𝜶 ∙
𝒗𝒅𝑾
𝒄𝒐𝒓𝒓

𝒔𝒅𝑾
𝒄𝒐𝒓𝒓+𝜺

𝒃 ≔ 𝒃 − 𝜶 ∙
𝒗𝒅𝒃
𝒄𝒐𝒓𝒓

𝒔𝒅𝒃
𝒄𝒐𝒓𝒓+𝜺
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AdaGrad Optimization

Adaptive Gradient descent (AdaGrad) decays the learning rate, but it 
does so faster for steep dimensions than for dimensions with gentler 
slopes. AdaGrad frequently performs well for simple quadratic 
problems, but it often stops too early when training neural networks.
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Learning Rate Decay

To avoid oscillation close to the minimum of the loss function, 
we should use non-constant learning rate but its decay, e.g.:
• We can decay the learning rate along with the training epochs:

• 𝜶 =
𝜶𝟎

𝟏+𝒅𝒆𝒄𝒂𝒚𝒓𝒂𝒕𝒆 ∙ 𝒏𝒐𝒆𝒑𝒐𝒄𝒉

• We can use an exponential learning rate decay:

• 𝜶 = 𝜶𝟎 ∙ 𝒆
−𝒅𝒆𝒄𝒂𝒚𝒓𝒂𝒕𝒆 ∙ 𝒏𝒐𝒆𝒑𝒐𝒄𝒉

• Another way to decay a learning rate:

• 𝜶 =
𝒌∙𝜶𝟎

𝒏𝒐𝒆𝒑𝒐𝒄𝒉

• We can also use a staircase decay, decreasing a learning rate after a given number of 
epochs by half or in another way.
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Local Optima (Minima)

A loss function can have many local minima, but we are 
interested in finding the global minimum do reduce training 
error as much as possible:
• We must avoid stacking in local minima of the loss function.

• We can try to define such a loss function to have no local minima.

• We can try to escape from local minima using mini-batches, momentum, RMSprop, 
Adam optimizer.

• The gradient in any local minimum
is always equal to 0!
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Saddle Points and Plateaus

Even if the loss function has no local minima, it can have saddle points where the 
gradient algorithm can stack because the gradient is close to 0:

• The loss function surface can be
locally flat.

• We want to escape from such
local plateaus (flat areas) where
the gradients are very small.
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Optimization of Hyperparameters

In deep learning, we have a huge number of hyperparameters 
that must be tuned to get a good enough computational model.
We have various techniques that help us to deal with this problem:

1. Systematically chose hyperparameters over the grid (mesh) tightening the prospective 
areas (sampling more densely prospective areas) (computationally very expensive due 
to the huge number of combinations to check).

2. Chose hyperparameters randomly many times sampling more densely prospective 
areas (uncertain but may be faster if you are lucky).

3. Use evolutional and genetic approaches (smart choice based on previous populations).
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Scale of Hyperparameter Optimization

Sampling hyperparameters we cannot simply scale them in a linear scale. 
Sometimes we need to use a different scale, e.g. logarithmic or exponential. 
Otherwise, we will sample not useful hyperparameters, not improving the 
developed computational model.

For example, when we want to sample learning rate, we should use a 
logarithmic scale, e.g.:

𝜶 = 𝟏𝟎𝒓 𝒘𝒉𝒆𝒓𝒆 𝒓 = −𝟒 ∗ 𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅()
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Approaches to Choose Hyperparameters

There at two main approaches to search for suitable hyperparameters:

• A babysitting model (Panda strategy) – in which we try to look at the performance of a 
model and improve patiently its hyperparameters.

• Many models train in parallel (Caviar strategy) – check many models using various 
combinations of the hyperparameters and choose the best one automatically.
If you have enough computational resources, you can afford this model.
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Batch Normalization (Batch Norm)

We normalize data to make their gradients comparable and to speed up the training process:

• We compute mean:

• 𝝁 =
𝟏

𝒎
σ𝒊 𝒛

𝒊

• and variance:

• 𝝈𝟐 =
𝟏

𝒎
σ𝒊 𝒛

𝒊 − 𝝁
𝟐

• to normalize:

• 𝒛 𝒊 = 𝜸 ∙ 𝒛𝒏𝒐𝒓𝒎
𝒊

+ 𝜷 where 𝒛𝒏𝒐𝒓𝒎
𝒊

=
𝒛 𝒊 −𝝁

𝝈𝟐+𝜺

where 𝜷, 𝜸 are trainable parameters (𝜷 𝒍 ∶= 𝜷 𝒍 − 𝜶 ∙ 𝒅𝜷 𝒍 , 𝜸 𝒍 ∶= 𝜸 𝒍 − 𝜶 ∙ 𝒅𝜸 𝒍 ) of the 
model, so we use gradients to update them in the same way as weights and biases.

• If 𝜸 = 𝝈𝟐 + 𝜺 and 𝜷 = 𝝁, then 𝒛 𝒊 = 𝒛 𝒊

• so the sequence of input data processing with normalization is as follows:

• 𝒙 𝒕
→ 𝒛 𝟏

→ 𝒛 𝟏
→ 𝒂 𝟏 = 𝒈 𝟏 𝒛 𝟏

→ 𝒛 𝟐
→ 𝒛 𝟐

→ 𝒂 𝟐 = 𝒈 𝟐 𝒛 𝟐 …

• and we apply it usually for 𝒕 ∈ 𝟏,… , 𝑻 minibatches subsequently.

• Thus, we have 𝑾 𝒍 , 𝒃 𝒍 , 𝜸 𝒍 , and 𝜷 𝒍 parameters for each layer, but we do not 

need to use 𝒃 𝒍 , because the shifting function is supplied by 𝜷 𝒍 .

Batch Norm has a slight 
regularization effect,
the less the bigger are 
the mini-batches.
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SoftMax Regression

SoftMax regression is a generalization of logistic regression for multi-class classification:

• It can be use together with different neural network architectures.

• It is used in the last network layer (L-layer) to proceed multi-class classification.

• Multi-class classification is when our dataset defines more than 2 classes, and the 
network answer should be not only between the answers yes or no.

• For each trained class (because there might be more classes in the dataset than 
the trained number of classes, but they are not labelled for supervised training), 
we create a single output neuron that should give us the probability of the recognized 
class of the input data. So for all trained classes we get the output vector ෝ𝒚 that defines 
the probabilities of classification of the input 𝑿 to one of the trained classes.

• SoftMax layer normalizes the final outputs 𝒂 𝑳 of all neurons of this layer by the sum of 

the computed outputs ෝ𝒂 𝑳 of the activation function used in this layer.
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SoftMax Evaluation

In the SoftMax layer, the activation function 𝒈 𝑳 is defined as: ෝ𝒂 𝑳 = 𝒈 𝑳 𝒛 𝑳 = 𝒆𝒛
𝑳

Specifically for each output neuron: ෝ𝒂𝒋
𝑳
= 𝒈 𝑳 𝒛𝒋

𝑳
= 𝒆

𝒛𝒋
𝑳

We use the sum of all output values of the activation functions ෝ𝒂𝒋
𝑳

𝒆𝒔𝒖𝒎 = 𝒂𝒋
𝑳
=

ෝ𝒂𝒋
𝑳

σ𝒋=𝟏
𝒏[𝑳] ෝ𝒂𝒋

𝑳

to compute the final output values of output SoftMax nodes as normalized by this sum:

𝒂𝒋
𝑳
=

ෝ𝒂𝒋
𝑳

𝒆𝒔𝒖𝒎
= 𝒂𝒋

𝑳
=

ෝ𝒂𝒋
𝑳

σ𝒋=𝟏
𝒏[𝑳] ෝ𝒂𝒋

𝑳

Thanks to this approach, the sum of all output values always sums up to 1, and the output values can be 
used to emphasise the probabilities of classifications to all trained classes and point the winner, e.g.:

𝒊𝒇 𝒛 𝑳 =

𝟐
𝟓
−𝟏
𝟑

𝒕𝒉𝒆𝒏 ෝ𝒂 𝑳 =

𝒆𝟐

𝒆𝟓

𝒆−𝟏

𝒆𝟑

=

𝟕. 𝟑𝟗
𝟏𝟒𝟖. 𝟒𝟏
𝟎. 𝟑𝟕
𝟐𝟎. 𝟎𝟗

𝒆𝒔𝒖𝒎 = 𝟕. 𝟑𝟗 + 𝟏𝟒𝟖. 𝟒𝟏 + 𝟎. 𝟑𝟕 + 𝟐𝟎. 𝟎𝟗 = 𝟏𝟕𝟔. 𝟐𝟔 𝒕𝒉𝒆𝒏 𝒂 𝑳 =

𝟕. 𝟑𝟗/𝒆𝒔𝒖𝒎
𝟏𝟒𝟖. 𝟒𝟏/𝒆𝒔𝒖𝒎
𝟎. 𝟑𝟕/𝒆𝒔𝒖𝒎
𝟐𝟎. 𝟎𝟗/𝒆𝒔𝒖𝒎

=

𝟎. 𝟎𝟒𝟐
𝟎. 𝟖𝟒𝟐
𝟎. 𝟎𝟎𝟐
𝟎. 𝟏𝟏𝟒

As we can notice σ𝒋=𝟏
𝒏[𝒍] ෝ𝒂𝒋

𝑳
= 𝟏, in our case 𝟎. 𝟎𝟒𝟐 + 𝟎. 𝟖𝟒𝟐 + 𝟎. 𝟎𝟎𝟐 + 𝟎. 𝟏𝟏𝟒 = 𝟏. 𝟎
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SoftMax Loss Function

When using SoftMax, the loss function is defined as:

𝑳 ෝ𝒚𝒋, 𝒚𝒋 = −

𝒋=𝟏

𝒏 𝑳

𝒚𝒋 𝒍𝒐𝒈 ෝ𝒚𝒋 = −𝒚𝒄 𝒍𝒐𝒈 ෝ𝒚𝒄 = −𝒍𝒐𝒈 ෝ𝒚𝒄

because only for 𝒋 = 𝒄 it is true that 𝒚𝒄 ≠ 𝟎, i.e. for the class it defines, moreover, 𝒚𝒄 = 𝟏:

𝒚 =

𝟎
𝟏
𝟎
𝟎

Therefore, the loss function can be minimized, when the ෝ𝒚𝒄 is maximised, i.e. tends to be close 1:

ෝ𝒚 = 𝒂 𝑳 =

𝟎. 𝟐
𝟎. 𝟒
𝟎. 𝟑
𝟎. 𝟏

So the goal of the training is intuitively fulfilled.

So the backpropagation step is started from:

𝒅𝒛 𝑳 = ෝ𝒚 − 𝒚
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Possible results get by SoftMax

Consider the trustworthy of the following example results got by the 
flat SoftMax neural network using various numbers of trained classes:

Can we trust such results or should we use deeper architecture to 
classify inputs with higher confidence?
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SoftMax Modifications

In the SoftMax layer, we can also use another activation function 𝒈 𝑳 to compute outputs values ෝ𝒂 𝑳 , 

e.g. if the activation function 𝒈 𝑳 would be a logistic function, then we got ෝ𝒂𝒋
𝑳
∈ 𝟎, 𝟏 , e.g. for the 

four trained classes, we get the output ෝ𝒂 𝑳 that is normalized to 𝒂 𝑳 :

(a) We have two initial high estimations of the logistic functions 0.98 and 0.92:

ෝ𝒂 𝑳 =

𝟎. 𝟎𝟔
𝟎. 𝟗𝟖
𝟎. 𝟎𝟒
𝟎. 𝟗𝟐

𝒔𝒖𝒎 = 𝟎. 𝟎𝟔 + 𝟎. 𝟗𝟖 + 𝟎. 𝟎𝟒 + 𝟎. 𝟗𝟐 = 𝟐. 𝟎 𝒂 𝑳 =

𝟎. 𝟎𝟔/𝒔𝒖𝒎
𝟎. 𝟗𝟖/𝒔𝒖𝒎
𝟎. 𝟎𝟒/𝒔𝒖𝒎
𝟎. 𝟗𝟐/𝒔𝒖𝒎

=

𝟎. 𝟎𝟑
𝟎. 𝟒𝟗
𝟎. 𝟎𝟐
𝟎. 𝟒𝟏

In this case, we got two quite high estimations of the logistic functions 0.98 and 0.92, but the final 
multi-class classification is not so high because the network is not sure which of these two highly 
approximated classes should the input belong to?! The result show this hesitation: 0.49 and 0.41.

The highest output value of the soft-max layer neurons is treated as the winning one and the most 
probable classification over the trained classes, but we also should take into account the final highest 
values that reduce the confidence of the answer given by the network!

Consider another classification result that gives only one initial high estimation 0.88 for class 2, but it is 
lower than 0.98. Which of these two classifications should we trust more (a) or (b) and why?

(b) We have only one initial high estimation 0.88 but it is lower than 0.98:

ෝ𝒂 𝑳 =

𝟎. 𝟏𝟒
𝟎. 𝟖𝟖
𝟎. 𝟏𝟐
𝟎. 𝟎𝟔

𝒔𝒖𝒎 = 𝟎. 𝟏𝟒 + 𝟎. 𝟖𝟖 + 𝟎. 𝟏𝟐 + 𝟎. 𝟎𝟔 = 𝟏. 𝟐 𝒂 𝑳 =

𝟎. 𝟏𝟒/𝒔𝒖𝒎
𝟎. 𝟖𝟖/𝒔𝒖𝒎
𝟎. 𝟏𝟐/𝒔𝒖𝒎
𝟎. 𝟎𝟔/𝒔𝒖𝒎

=

𝟎. 𝟏𝟐
𝟎. 𝟕𝟑
𝟎. 𝟏𝟎
𝟎. 𝟎𝟓
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Let’s start to change hyperparameters!
✓ Improving performance of the training 

✓ Speeding up the training process

✓ Not stacking in local minima

✓ Using less computational resources to get the model
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